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Seq2Seq



The Seq2Seq model is an important architecture widely used in
NLP tasks such as machine translation.
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In most cases, the basic unit of a Seq2Seq model is an LSTM
network.
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In the task of machine translation, LSTM outperformed the
standard RNN because...
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The key reason is that LSTM uses two parallel flows of

information.
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The key reason is that LSTM uses two parallel flows of
information.
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The key reason is that LSTM uses two parallel flows of
information.
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Seq2Seq-LSTM

Therefore, LSTM can overcome long-term dependencies in
sentences by using its cell state (CS) and hidden state (HS).
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The biggest challenge in machine translation is the difference in
word order and sentence length between languages. The
Seq2Seq model solved this problem in a groundbreaking way.
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Then, Seg2Seq evolved further...
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...by introducing the Attention algorithm,
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...which eventually led to the development of the Transformer
model.
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How does the Seq2Seq model work?

Thankyou =———— Muchas gracias
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First, we input the word “Thank” into the LSTM.
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To process this word numerically, we apply word2vec
embeddings.
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*Suppose a simple dictionary composed of three tokens: “Thank,”
“you,” and “<EOS>."
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We input the first token, “Thank.”
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Through forward propagation, “Thank” generates cs1 and hs1.
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Next, we input the word “you.”
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The previous cs1 and hs1, together with the word vector for
“you,” produce new states cs2 and hs2.
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Since the English sentence ends here, we input the token “<EOS>"
(End of Sentence).

21



“<EOS>" generates cs3 and hs3.
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These cs3 and hs3 encode the long- and short-term information
of all words in the sentence.
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In the Seq2Seq model, we combine ¢s3 and hs3 and call it the
context vector.
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An LSTM can have a single layer...
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...or we can stack two layers to obtain a richer context vector.
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In this case, the second LSTM layer has its own independent
weights and biases.
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This part is called the encoder in Seq2Seq.
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Now, using the context vector, the model begins the generation
process.
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The decoder also uses LSTM.
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This LSTM is completely new; its weights and biases are
independent from the encoder’s LSTM.
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The decoder uses a new word2vec embedding;
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The decoder uses a new word2vec embedding;
For Spanish tokens “Muchas”, “gracias”, and “<EOS>".
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It starts by taking ¢s3 and hs3 from the context vector as the
initial input.
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At the same time, the sentence begins with the token “<EO0S>."
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Although semantically it might make more sense to use “<SOS>"
(Start of Sentence),
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...in many cases, the end of one sentence also signals the start of
another.
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Thus, the decoder usually starts with the context vector and the
token “<EOS>."
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The LSTM then produces cs4 and hs4.
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The decoder’s word2vec component receives hs4 and computes
its output.
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The output of word2vec is converted into probabilities using a
softmax function.
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Based on the softmax output, the LSTM produces the word
“gracias.”
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This output word is then fed back into the LSTM as the next input.
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The input “gracias,” together with cs4 and hs4, generates new

states cs5 and hs5.
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We then repeat the same process—passing through the decoder
and applying softmax again.
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The softmax output this time becomes “<EOS>,” marking the end
of translation.
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This completes the forward pass of the Seq2Seq model. (The

backward pass updates weights from the context vector back to
the encoder)
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This entire decoding process is called the decoder in Seq2Seq.
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Overall, the Seq2Seq model can be viewed as an
Encoder-Context-Decoder structure.
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Because Seq2Seq has this Encoder-Context Vector-Decoder
structure, it can translate between languages with very different
word orders and sentence lengths.

* English — Spanish: How are you? — ;Cémo estds?
* English — French: How are you? — Comment ¢a va ?
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Seq2Seq is also widely used in conversational applications like
chatbots.

* User: “How's the weather today?”

* Bot: “It's sunny and warm!”

+ User: “Great, should I go hiking?”

+ Bot: “Yes, that sounds like a great idea!”
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Seq2Seq: Problem

Seq2Seq is great, BUT...
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Seq2Seq: Problem

There was a limitation.

52



Seq2Seq: Problem

There was a limitation.
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Seq2Seq: Problem

If the input sequence becomes this long...
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Seq2Seq: Problem

It becomes quite difficult to pack all the information of the input
sequence into a fixed-length context vector.

This is called Bottleneck problem. o



Seq2Seq: Problem

The attention mechanism was introduced to address this
problem.
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Seq2Seq: Problem

When the decoder generates each word in the output sequence,
the attention mechanism
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Seq2Seq: Problem

is an algorithm that makes it “attend” to which parts of the input
sequence are important.
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Seq2Seq: Problem

Introducing attention enables the model to handle longer
sequences and improves translation quality, among other
benefits.
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Seq2Seq: Problem

Its effect is especially prominent in tasks with complex sentence
structure or long-distance dependencies.
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New technique: Attention



Now, let's look at what the attention mechanism is.
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Suppose the input sequence comes in like this:
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We store the hidden state for each input word separately, as
follows.
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Then, as in plain Seg2Seq, we build a context vector and feed it to
the decoder,
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and obtain the decoder’s hidden state and output as follows.
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The core of attention is to find the relationship between the
current decoder hidden state and the input that is estimated to
be most relevant.
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Here, the measure that determines the relationship between two
hidden states is, again, the similarity between two vectors.
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The methods for computing attention scores—i.e., vector
similarity—can be broadly divided into three types.
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Each method has its own characteristics and computational
complexity, but
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ultimately they all amount to comparing vector similarity
between the input and output sequences to produce attention

scores.
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We will use the simplest method: the dot product.
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For example:
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For example:

| Gracias
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For example:
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For example:
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Suppose the encoder hidden state is (0.8, 0.2) and the decoder
hidden state is (0.7, 0.3).
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Suppose the encoder hidden state is (0.8, 0.2) and the decoder
hidden state is (0.7, 0.3).
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Then the attention score s1 becomes 0.62 through the following
dot-product computation.
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Next, we compute the softmax of each attention score.
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Why Softmax?
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Why Softmax? To convert the attention scores into a probability
distribution and normalize them.
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Next, we multiply each attention score by its corresponding input
hidden state.
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We do this because each attention score is a simple scalar value,
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and the multiplication has the effect of amplifying the input
hidden states according to their attention weights.
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For example, if the attention scores after the softmax layer are as
follows—
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For example, if the attention scores after the softmax layer are as

follows—
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Then the input state (0.8, 0.2) multiplied by 0.7 becomes (0.56,
0.14).
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Now, take these attention-weighted input hidden states,
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sum them up, and you obtain a new context vector.
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sum them up, and you obtain a new context vector.
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sum them up, and you obtain a new context vector.

Compared to this context vector
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sum them up, and you obtain a new context vector.

L Because itis a new hidden state

whose attention score has been
amplified...
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Feed this into the next decoder LSTM hidden state, and provide
the required values in turn,
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and you can compute the next hidden state,
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and in the same way compute the attention context vector for the
following step.
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Seq2Seq with attention
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Seq2Seq with attention

dot product

Attention
scores

Encoder
RNN
NNY Japodaq

,

il a m’  entarté <START>

I\ J
Y

Source sentence (input)

96



Seq2Seq with attention
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Seq2Seq with attention

dot product
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Seq2Seq with attention

Attention
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On this decoder timestep, we're

mostly focusing on the first
/ encoder hidden state (“he”)

Take softmax to turn the scores
into a probability distribution
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Seq2Seq with attention

Attention
output

«+—] Use the attention distribution to take a
weighted sum of the encoder hidden states.

The attention output mostly contains
information from the hidden states that
received high attention.
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Seq2Seq with attention

Attention
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Concatenate attention output
with decoder hidden state, then
use to compute $; as before
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Attention is a general deep learning technique

Upshot:

+ Attention has become the powerful, flexible, general way
pointer and memory manipulation in deep learning models.
(A new idea from 2010).
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The transformer model



Eventually led to the development of the Transformer model.
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Attention in transformers, step-by-step

Multi-head attentions
https://www.youtube.com/watch?v=eM1x5fFNoYc
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https://www.youtube.com/watch?v=eMlx5fFNoYc

* 10/9: Group meeting (after the meeting, Background
research topic submission by 10th)

* 10/14: Fall Break
* 10/16: Quiz (Online)
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Group Meeting Schedule

Time Group

12:30-12:38 Group 1
12:38-12:46  Group 2
12:46-12:54 Group 3
12:54-1:02  Group 4
1:02-1:10 Group 5
1:10-1:18 Group 6
1:18-1:26 Group 7
1:26-1:34 Group 8
1:34-1:42 Group 9
1:42-1:45 Buffer

+ Each group has about 8 minutes. If one finishes early, the
next group may begin right away.
* Please bring your Background Research Brief draft

* The final version should be submitted by Friday (10/10)
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https://hksung.github.io/Fall25_LING581/assignments/01_One-page%20background%20research%20brief

Quiz (Online) - Updated!

« Worth 10 points: Designed to help you review key concepts
covered in class
+ Open book, but use of Al tools is not allowed; Focuses on
the essential ideas discussed in class — take it as an
opportunity to check your own understanding!
+ 75 minutes to complete once you begin (you cannot pause
or restart after starting)
Available on Thursday (10/16) 9 AM-5 PM
Question types:
+ Multiple Choice: 21 questions
+ Short Written Response: 6 questions (approximately 100-150
words, one paragraph each)
* Long Written Response: 1 question
+ Scope: All topics covered from the first class (Word Vectors)
through the last class
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